KOOLS-IFUによるブラックホール形成環境の解明

1

矢部清人(東大/Kavli IPMU) + 井上芳幸 (RIKEN)

Ultra-luminous X-ray sources (ULXs)

- ULXs are extra-galactic X-ray binary (XRB) systems with L_X > 10³⁹ erg/s at off-nucleus position
- A large variety of X-ray spectral shapes (Gladstone+09)
 - Different from Galactic X-ray binaries
 - Cut-off at 10 keV?
- The origin of ULXs
 - Stellar mass BHs with M_{BH}~10 M_{sun}? (e.g. Gladstone+09)
 - Intermediate mass BHs with M_{BH}>>10 M_{sun}? (e.g, Makishima+00)
 - Neutron stars? (e.g., Bachetti+13)

or combination of these scenarios?

Stellar mass black hole scenario

- Supercritical Accretion (e.g., Ohsuga+09)
 - $dM/dt >> dM_{Edd}/dt$
 - v~0.3 c outflow is predicted
- Observed X-ray spectra of ULXs can be explained by this scenario (e.g., Kawashima+12)
- A possible evidence of the associated outflow has been reported (Pinto+16)

Kawashima+12

Pinto+16

Intermediate mass black hole scenario

• HLX-1

- $L_X \sim 10^{42} \text{ erg/s}$
- State transition (Farrell+09)
- Radio flares observed (Webb+12)
- M_{BH} ~ 10⁴ M_{sun}?

• M82 X-1

- $L_X \sim 10^{41} \text{ erg/s}$
- Quasi-periodic oscillations (QPOs) with 3:2 frequency are detected (Pasham+14)
- M_{BH} ~ 500 M_{sun}?
- Some evidences for NGC 2276 X-1 and others ...

Webb+14

Pasham+14

Neutron star scenario

- M82 X-2 (L_X ~ 10⁴⁰ erg/s)
 - QPO of 3-4 mHz (Feng+10)
 - Intermediate mass BH?
- A pulse feature is discovered with NuSTAR (Bachetti+14)
 - Pulsars can host ULXs
 - Only 3 known ULX pulsars

Bachetti+15

Luminosity function (LF) of ULXs

- XRB luminosity function is known to be correlated with star formation rate (e.g., Mineo+12)
- A simple power-law (γ~1.6) + cutoff over 10⁴⁰ erg/s (e.g., Grimm+03, Swartz+11, Walton+11, Mineo+12)
- Single or multiple population?

XRB LF in each galaxy

SFR normalized XRB LF

X-ray binary system as a tracer of galaxy SFR

- These populations are a good tracer of the star-formation rate of the host galaxies (e.g., Grimm+03)
 - The number of HMXBs increases
 with increasing host SFR

• $L_X \propto SFR^{-1.7}$

 Good correlations with other SFR indicators such as farinfrared (FIR) and radio (1.4GHz) luminosity (e.g., Ranalli+03)

XRB contribution to spectra of metal poor galaxies?

- Strong emission line galaxies at z=0.4-0.9 discovered by Subaru/HSC
 - Very low-mass (10⁷⁻⁹ M_{sun})
 - High specific SFR (10-1000 x MS)
 - Metal poor (Z < 0.2 Z_{sun})
 - Extreme [OIII]5007/[OII]3727 ratio
- Similar to those in the early Universe

Yabe+18 (to be submitted)

- Hell λ4686 detected
 - WR (or O-stars)? (e.g.,Crowther+06)
 → but no clear WR feature?
 - Shock? (e.g., Dopita+96)
 - HMXB? (e.g., Garnett+91)

Motivation of this work

- What kind of environment ULXs/XRBs are in?
 - Are ULXs and XRBs in different environment?
 - Massive BHs are hard to form in metal rich environment (e.g. Spera+15)
 - If ULXs are very massive BHs in origin, they are presumably in lowmetal environment
 - ULX host galaxies have Z < 0.5 Z_{sun} (Mapelli+10)
- The local environment of ULXs/XRBs remains unclear, and detailed examination (especially spectroscopically) is indispensable

Spera+15

Mapelli+10

Antennae (NGC 4038/4039)

- Correlation between X-ray source positions and stellar clusters (Kaaret+14)
- Mostly showing strong emission lines
- ULXs are associated with young (<10 Myr) star clusters (Poutanen+13)

Poutanen+13

Proposed observation with 3.8m/KOOLS-IFU

- A systematic spectroscopic observation of ULXs/XRBs with stellar cluster associations in nearby galaxies (<100 Mpc?)
- The main goals:
 - Local metallicity measurement for ULXs/XRBs/others
 - Age estimation of the associated stellar cluster (ULX lifetime)
- Comparison between ULXs/XRBs/others
- IFU would be very useful if there are multiple stellar clusters in possible associations with ULXs/XRBs (see next page)
- 3.8m telescope capability is enough as long as we target relatively bright stellar clusters (see after next page)

5 arcsed

02.00s

01.50s

01.00s

RA (J2000)

00.50s

13h30m00.00s

12.00s

30m00.00s

48.00s

RA (J2000)

54.0"

48.0"

42.0"

36.0"

+47°13'30.0"

Dec (J2000)

Example: M51 (NGC 5194/5195)

- 3 ULXs associate with star clusters (SCs)
- Offsets from the SC positions (kicked?)

16'00.0"

14'00.0"

V=19.6

Example: M51 (NGC 5194/5195)

- 5 XRBs associate with star clusters (SCs)
- Offsets from the SC positions (kicked?)

56.00s RA (J2000)

12.0" 06.0" Dec (J2000 14'00.0" 54.0" V=19.1 +47°13'48.0" 57.00s 55.50s 55.00s 13h29m54.50s 56.50s 56.00s RA (J2000)

13

(1+r+i

Observation feasibility

- Typical magnitude of the bright SCs is V=18-19 AB mag
 - There are some faint SCs (<19 AB mag.) around X-ray sources
 - Mostly point sources under the seeing in Okayama (~1.5 arcsec.)
 - The target wavelength range is 3500 7000 Å, which covers the major stellar feature and nebular emission lines
- Sensitivity of KOOLS-IFU
 - No.5 grism (4000 7000 Å)
 - t_{exp}=3600 sec., S/N=10 \rightarrow m^{limit}~19.5 mag

3.8m搭載時の (予想) パラメータ					
グリズム	No. 5	No. 2	VPH495	VPH683	
ファイバー本数	127本				
1ファイバーの 視野	0.91" (直径)				
全ファイバー での視野	14.8" (直径)(filling factor~0.58)				
観測可能波長	(4000— 7000 Å)	(6000— 10000 Å)	4160— 6000 Å	6150— 7930 Å	
波長分解能 (λ/Δλ)	(~600)	(~1000)	N/A	1900— 2300	
最大 スループット	5.3%	8.1%	N/A	8.2%	
(※1ファイバーに全ての天体光が入った場合)					

予想限界等級 @3.8 m望遠鏡

グリズム	No.5 (青)	No.2 (赤)
	19.1 mag	19.0 mag

- Enough capability to target most of our targets
- VPH-blue is better choice?

Observation feasibility

- We also aim to detect emission lines
 - Emission lines would be sufficiently bright compared to the continuum level according to the past observations for ULXs (Poutanen+13)
 - Spectral resolution (R~600) is enough to separate major emission lines (such as Hα and [NII]6584)

V~18.5

3

2

Poutanen+13

The immediate objectives

- Gas metallicity measure from obtained emission lines
 - Various metallicity indicators (e.g., T_e, R23, N2, O3N2)
- Age measurements of the star clusters
 - Color-color diagram?
 - Age-metallicity-extinction degeneracy
 - Upper limits for ULX/XRB lifetime

- Comparison between ULXs and XRBs
- Comparison to SCs without ULX/XRB associations
- If ULXs associate with preferentially low metal SCs, they may be very massive black hole in origin?

Poutanen+13

Summary

- ULXs are extra-galactic X-ray binary (XRB) systems with $L_X > 10^{39}$ erg/s at off-nucleus position
- Different X-ray spectra from Galactic X-ray sources
- Their origin is still unclear
 - Stellar mass black holes?
 - Intermediate mass black holes?
 - Neutron stars?
- The LF of XRBs indicates that they are a single population
- The environment of ULXs/XRBs is still unclear
- KOOLS-IFU spectroscopy for SCs with ULX/XRB association
- The local metallicity measurements from emission lines
- The age of SCs would be a constraint to the ULX/XRB lifetime